Automated labeling for unsupervised neural networks: a hierarchical approach
نویسندگان
چکیده
In this paper a hybrid system and a hierarchical neural-net approaches are proposed to solve the automatic labeling problem for unsupervised clustering. The first method consists in the application of nonneural clustering algorithms directly to the output of a neural net; the second one is based on a multilayer organization of neural units. Both methods are a substantial improvement with respect to the most important unsupervised neural algorithms existing in literature. Experimental results are shown to illustrate clustering performance of the systems.
منابع مشابه
- 1 - Automated Labeling for Unsupervised Neural Networks : a Hierarchical Approach
In this paper an hybrid system and a hierarchical neural net approaches are proposed to solve the automatic labeling problem for unsupervised clustering. The first method consists in the application of non-neural clustering algorithms directly to the output of a neural net; the second one is based on a multi-layer organization of neural units. Both methods are a substantial improvement with res...
متن کاملطبقه بندی و شناسایی رخسارههای زمینشناسی با استفاده از دادههای لرزه نگاری و شبکههای عصبی رقابتی
Geological facies interpretation is essential for reservoir studying. The method of classification and identification seismic traces is a powerful approach for geological facies classification and distinction. Use of neural networks as classifiers is increasing in different sciences like seismic. They are computer efficient and ideal for patterns identification. They can simply learn new algori...
متن کاملSolving nonlinear Lane-Emden type equations with unsupervised combined artificial neural networks
In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on neural networks
دوره 10 1 شماره
صفحات -
تاریخ انتشار 1999